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Abstract 

 
Biomass gasification potentially generates not only producer gas but also tarry components. 
Practically, the gas may be used as a substitute for traditional fuel in an internal combustion 
engine after reducing the tar. This research examines the application of a producer gas recycle 
system to reduce the tar component of producer gas generated with cocoa pod husk gasification 
using air as a gasifying agent in a fixed-bed downdraft gasifier. The cocoa pod husk feed sizes 
are +1” sieve, -1”+0.5” sieve and -0.5” sieve. The gasification process is operated at a 
temperature range of 491–940 oC and at various gasifying agent volumetric rates of 62.84, 
125.68 and 188.53 NL/min or at an equivalent ratio range of 0.014–0.042. The recycle system 
of outlet producer gas to gasifier is set at volumetric rates of 0.139, 0.196 and 0.240 L/min. 
The performance of the system is evaluated by analysing the tar component using the 
gravimetric method of ASTM D5068-13. The gas components of CO, H2, CO2 and CH4 
compositions in the producer gas are also analysed with gas chromatography. This recycle 
system succeeded in reducing the tar content by as much as 97.19% at 0.139 L/min of the 
recycle volumetric rate and at a biomass feed size of -1”+0.5” sieve. The producer gas contains 
CO, H2, CO2 and CH4 at 23.29%, 2.66%, 13.30% and 14.18%, respectively. The cold gas 
efficiency of the recycle efficiency is 65.24% at a gasifying agent volumetric rate of 188.53 
L/min and at a biomass feed size of +1” sieve. 
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1. Introduction 
 

Biomass is an attractive future energy 
resource as its availability is sustainable and 
it is considered as carbon neutral. As a 
tropical archipelagic country, Indonesia is rich 
in biomass sources and every region in this 

country has its own specific biomass. Cocoa 
beans are an important commodity in 

Indonesia in addition to crude palm oil. Cocoa 
bean processing generates cocoa pod husks, 
which are potential biomass energy 
resources. Cocoa fruit consists of 70–80% of 
pod husks, bean shells and pulp (Vásquez et 
al., 2019), with one ton of dry cocoa beans 

generating ten tons of wet cocoa pod husks 
(Campos-Vega et al., 2018). 
 
Cocoa pod husks are mainly utilised as raw 
material mixtures for livestock feed in 
Indonesia because of their protein, fibre, 
crude fat and mineral contents. By pyrolysis 

over iron oxide catalysts, the husks are 
synthesised to produce several chemical 
compounds, such as ketones, carboxylic 
acids, aldehydes, furans, heterocyclic 
aromatics, alkyl benzenes, phenols and 
benzenediols (Mansur et al., 2014). Pectin as 

a chemical substance for gelling in the food 
industry can possibly be produced from cocoa 

pod husks (Campos-Vega et al., 2018). 
Extraction using sugar acid treatment in an 
acidic solution is promoted as 
environmentally-friendly technology for 
pectin isolation (Priyangini et al., 2018). 

 
As biosorbents, cocoa pod husks exhibit 

absorbance characteristics for the removal of 
not only heavy metals, such as Cd(II), Pb(II), 
Cu(II) and Zn(II), from aqueous solution 
(Njoku, 2014), but also sodium diclofenac in 
waste water effluent (de Luna et al., 2017; 
Saucier et al., 2015). Limited research has 

been focused on husks as renewable energy 
sources because they are a lignocellulosic 
biomass (Ofori-Boateng et al., 2013; Dahunsi 
et al., 2019a; Dahunsi et al., 2019b) and have 
a relatively high calorific value of ~12.5–18.0 
MJ/kg (Syamsiro et al., 2012; Titiloye et al., 
2013; Forero-Nuñez et al., 2015; Adjin-

Tetteh et al., 2018). Thermochemical 
conversion processes for husks, such as 
carbonisation (Syamsiro et al., 2012), fast 
pyrolysis to produce bio-oil, biochar and non-
condensable gas (Adjin-Tetteh et al., 2018), 
and co-combustion of husk-coal pellets 
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(Forero-Nuñez et al., 2015), have been 
investigated. Cocoa pod husks are 
accumulated sufficiently around the cocoa 
bean processing industry, which cuts handling 

and transportation costs. Most husks are 
wasted around the plantation area without 
any treatment. 
 
The biomass gasification process using 
ambient air is a suitable and flexible method 
to convert cocoa pod husks into combustible 

gaseous products (producer gas), which 
mainly contain carbon monoxide, hydrogen, 

methane and nitrogen. Simultaneously, 
unwanted organic gaseous products, such as 
tar, are also generated. Analysis of this tar 
shows that aromatic and phenolic compounds 
dominate. The tar may interfere with the 

combustion process when the gas substitutes 
fossil fuel in an internal combustion engine. 
Thus, the tar should be isolated before use. 
Reducing tar means increasing the 
combustible gas content and cold gas 
efficiency of the producer gas simultaneously. 

The performance evaluation of gasification is 
based on the producer gas chemical 
compositions, including tar, the low heating 

value (LHV) of the gas and the cold gas 
efficiency (CGE). 
 
Generally, two major methods are proposed 

to reduce tar contents. The primary method 
emphasises the prevention of tar formation in 
the gasification process, such as by using a 
fluidised bed gasifier at a reaction 
temperature of 900–1000 oC (Mohammed et 
al., 2011; Esfahani et al., 2012; Makwana et 
al., 2015) and at a proper equivalence ratio 

(ER) when using air as a gasifying agent 
(Ghani et al., 2009; Sarker et al., 2015). 
Instead of air, the use of steam as a gasifying 
agent with a steam/biomass ratio of 0.5–0.8 

at 900 oC decreased the tar yield by 20% 
(Fremaux et al., 2015). 

 
The formed tar in the producer gas can also 
be isolated using a secondary method, which 
applies an additional tar removal system after 
the gasifier reactor. A packed bed scrubber 
using a specific solvent, such as acetone and 
ethanol (Chang et al., 2011), linoleic acid 

(Malek et al., 2016) or biodiesel (Madav et al., 
2019), has been applied to remove the tar 
content in the producer gas. These studies 
showed successful reductions in the tar 
content in the gas of 95%. An additional 

secondary method using high-temperature 
gas filtration and catalytic reforming of 

hydrocarbon gases and tar is also proposed to 
obtain tar-free fuel gases (Simell et al., 
2014).  
 

Instead of air, oxygen or steam, carbon 
dioxide can also be used as a gasifying agent 
to substantially increase the carbon and 
energy conversion efficiency and decrease the 

amount of tar in the producer gas. During the 
gasification process, carbon dioxide reacts 
with the char to form carbon monoxide by the 
Boudouard reaction. The carbon dioxide also 
promotes dry dealkylation and dry reforming 
endothermic reactions of hydrocarbon 
(including tars) in the producer gas to 

generate more CO and H2 (Pohořelý et al., 
2014; Antolini et al., 2019; Shen et al., 2019; 

Zhang et al., 2019). By using a recycle 
system of producer gas containing carbon 
dioxide into a downdraft gasifier with 
eucalyptus wood as feedstock, the tar content 
was successfully reduced by up to 91% 

(Jaojaruek et al., 2011). A thermodynamic 
analysis of a carbon dioxide recycle system 
also showed that this technique increased 
syngas production at high pressure and low 
temperature. The optimum CO2/C was 
reported to be ~0.1–0.2 (Chaiwatanodom et 

al., 2014). When the carbon dioxide sources 
come from a carbon capture and storage 
system, an intensity of ~1.55 kg CO2/kg wet-

biomass generates carbon-negative power 
generation (Prabowo et al., 2015).  
 
Furthermore, a recycle system on the updraft 

gasifier causes H2 increases and CO decreases 
with increasing producer gas recycle rate and 
gasifying agent flowrate. Increasing the 
primary gasifying agent flowrate tends to 
increase the amount of CO and reduces the 
amount of H2 produced (Surjosatyo, 2014). 
Using a recycle system on a bubbling 

fluidised-bed gasifier, a tar content was 
observed from 6–18 g/Nm3, which increases 
the efficiency of cold gas (Barisano et al., 
2015). 

 
A briquette of lignite and sawdust mixture air-

gasification in an atmospheric downdraft 
gasifier at a temperature range of 740–915 
°C was investigated by studying the effect of 
ER at a range of 0.240–0.386 (Upadhyay et 
al., 2018). The experiment showed that 
increasing the ER resulted in an increase of 
CO and a decrease in both CO2 and H2. It was 

also observed that the cold gas efficiency of 
this experiment was 50.67–80.03% and the 
tar content was in the range of 516.3–565.23 
mg/Nm3. By varying the ER from 0.20 to 
0.29, wood was gasified in a downdraft 

gasifier using air as a gasifying agent, which 
generated a producer gas with a low heating 

value of 4.9–5.4 MJ/m3 and CGE of 38–52% 
(Vonk et al., 2019). 
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This research investigates the gasification of 
cocoa pod husks in a downdraft fixed-bed 
gasifier with an air-recycle producer gas 
premixed supply system. In addition to the 

tar content, the gas composition of CO, H2, 
CO2 and CH4 is observed. The CGE of the 
system is also evaluated. 
 
2. Method 

2.1. Materials 
 

Cocoa pod husks were obtained from a cocoa 

plantation of the Jumapolo sub-district in the 
Karanganyar District of the Central Java 
Province, Indonesia. A chemical composition 
and heating value analysis was executed by 
the Mineral and Coal Technology – Centre of 
Research and Development in the Ministry of 

Energy and Mineral Resources of the Republic 
of Indonesia (Table 1). As with other 
biomasses, the main component of the pod 
husks is volatile matter. 
 
Table 1. Typical chemical compositions and 

calorific value of cocoa pod husks. 

Proximate Analysis (adb) 

Moisture 12.66% 
Volatile Matter 60.95% 
Fixed Carbon 18.42% 
Ash 7.97% 

Ultimate Analysis 

Carbon 39.87% 
Hydrogen 5.96% 
Nitrogen 0.74% 
Total Sulfur 0.13% 
Oxygen 45.33% 

GHV (MJ/kg) 15.46 
(Analysed by Mineral and Coal Technology – Centre of Research and 
Development in the Ministry of Energy and Mineral Resources of the 

Republic of Indonesia, 2018) 

 
2.2. Experimental Setup 

 
All experiments were completed in a 3 kg/h 

downdraft gasifier with a throat diameter of 
0.1 m and a total height of 1.0 m. A cyclone 
separator functioned as a dust collector. A 
test-burner for checking the gas formation 
before sampling was installed. Air as a 
gasifying agent was supplied into the gasifier 
with a 2 hp air blower. 

 
The feedstocks sizes were classified into three 
groups: retaining on a 1.0” sieve (+1.0”), 
passing on a 1.0” sieve and retaining on a 
0.5” sieve (-1.0”+0.5”) and passing on 0.5” 
sieve (-0.5”). Before feeding, the cocoa pod 

husks were air-dried for 2–3 d. The air 
flowrate varied at 62.84, 125.68 and 188.53 
L/min for gasifying each feedstock size. Two 
different operation modes without recycling 
(No-R) and with recycling (R) of the producer 
gas at fractions of 7.0%, 9.0% and 12.0% 

(v/v) were applied for each combination of 
feedstock size. 
 
The tar content in the gas was collected in a 

series of impinger bottles, with four bottles 
filled with 50 mL of isopropyl alcohol solvent 
to absorb the tar in the gas and one empty 
bottle. The sampled gas flowed into the 
impinger set because of vacuum pump 
suction. This sampling method is in 
accordance with the guidelines for sampling 

and analysis of tar and particles in the 
producer gas generated with biomass 

gasification (ASTM D5068-13). After 
evaporating the solvent, the tar residue was 
weighed and the tar content in the gas was 
calculated using Equation (1):  
 

𝑡𝑎𝑟 =
𝑚𝑡𝑎𝑟,𝑐𝑙𝑜𝑠𝑒−𝑚𝑡𝑎𝑟,𝑜𝑝𝑒𝑛

𝑚𝑡𝑎𝑟,𝑐𝑙𝑜𝑠𝑒
×  100%      

(1) 

where 
tar  : tar content, kg 
mtar,close : mass of tar (without recycle), kg 
mtar,open : mass of tar (with recycle), kg 

The gas outlet from the impinger set was 
analysed with gas chromatography using a 

GC-2014 Shimadzu, TCD-14 sensor to detect 
CO, H2, CO2 and CH4. Using these results and 
Equation (2), the LHV of the gas was 

calculated (Gu et al., 2018): 
 

LHV =
10.79𝐻2+12.60𝐶𝑂+35.86𝐶𝐻4

100
               (2) 

 

where 
LHV : heat value of syngas, kJ/Nm3 
H2 : mole fraction of H2 in the gas 
CO : mole fraction of CO in the gas 
CH4 : mole fraction of CH4 in the gas 

Air and gas sample flowrates were measured 
with rotameters, while the recycled gas was 
determined with an orifice plate. The throat 

temperature was monitored with a 1200 K 
thermocouple. Three bimetal thermometers 
were installed to monitor the temperature of 
the recycled gas, cyclone outlet gas and gas 
samples. All the equipment was assembled as 
shown in Figure 1 at the Pilot Plant and 
Energy Conversion Laboratory of the Faculty 

of Engineering, Universitas Sebelas Maret in 
Surakarta. 
      
After completing the process, the solid 
residues were weighed for the calculation of 

the CGE using Equation (3). CGE is defined as 
the ratio between the flow of energy in gas 

and energy contained in biomass feedstocks. 
This CGE value represents the performance of 
the   gasifier configuration used for gasifying 
the cocoa pod husks. 
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Figure 1. Experimental setup.

 

𝐶𝐺𝐸 =
𝑉𝑔𝑎𝑠 × 𝐿𝐻𝑉𝑔𝑎𝑠

𝑚𝑏 × 𝐿𝐻𝑉𝑏
 ×  100%     (3) 

 

where 

CGE : cold gas efficiency 
Vgas : syngas flow rate, Nm3/h 

LHVgas : heating value of syngas, kJ/Nm3 

mb : mass feed biomass, kg/h 
LHVgas : heating value of biomass, kJ/kg 

3. Results and Discussion 

3.1. Producer Gas Composition 
 
Based on the results (Figure 2), the 
concentration of CO gas shows an increasing 
tendency (9.55–17.49%) with the recycle 

system and a fluctuating condition between 

4.71% and 23.29% without the recycle 
system. The feedstock size to obtain the 
highest CO concentration in the recycle 
system was for retaining on the 1” sieve, with 
an air flowrate of 188.53 L/min (ER = 0.042) 
and an average gasification temperature of 

883 °C. In contrast, without the recycle 
system, the feedstock size and air flowrate to 
obtain the highest CO concentration were 
retaining on a 1” sieve and a 125.68 L/min air 
flow rate (ER = 0.028), respectively, and an 
average gasification temperature 761 oC.  

 
Although more CO content was produced in 
the producer gas without the recycle system, 

the syngas product was lower than with the 
recycle system. The recycle system is capable 
of generating more producer gas with a 
relatively high CO content. The 

thermodynamic study of biomass gasification 
using CO2 recycling proved to increase the 

gas production. It is obvious that the water 
gas shift reaction promotes CO production 
with the increase of CO2 concentration in the 
gasifying agent (Chaiwatanodom et al., 

2014). Again, the Boudouard reaction also 
proceeded in the gasifier and it was enhanced 

by the increase of CO2 injection from recycling 
(Prabowo et al., 2015). 
 
With recycling, the hydrogen composition 
tends to rise from 9.21% to 13.30% with an 
increasing in the air flowrate from 62.84 to 
188.53 L/min (Figure 3). The highest H2 

concentration of 13.30% was obtained at an 
air flowrate of 188.53 L/min (ER = 0.042) and 
retaining on the 1” sieve feedstock size with 
an average temperature of 883 oC. Similar to 
CO2, a fluctuation of hydrogen composition 

was identified when no recycle system 

applied. The highest H2 concentration is 
11.67% when the air flow rate was 125.68 
L/min (ER = 0.028) and the size of the 
feedstock passing 0.5 in sieve with an 
average gasification temperature of 761 oC. 
 
The results of the present study are in 

accordance with the research conducted with 
an updraft gasifier at 1148–1273 K and 
biomass size of 3 cm x 3 cm (Surjosatyo et 
al., 2014). With increasing recycle flowrate 
from 0.0183 to 0.035 L/min, the obtained H2 
gas concentration increased from 11% to 
17%. This is also directly proportional to the 

research using wood pellet biomass, 
bioplastic pellets and olive husk pellets as 
feedstocks of a fluidised bed gasifier and 
steam as the gasifying agent (Ruoppolo et al., 
2012). The operating conditions were an ER 
of 0.09–0.30 at temperature of 780 oC. 
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Figure 2. Effect of air flowrate on CO content 

 
 

 
 

Figure 3. Effect of air flowrate on H2 content 
 

 
 

Figure 4. Effect of air flowrate on CH4 content 
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Figure 5. Effect of air flowrate on CO2 content 
 

 

Hydrogen gas concentrations showed a 
tendency to increase and fluctuate as the ER 
value and the ratio between steams to fuel 
increase. 
 
As a combustible gas component of producer 

gas from biomass gasification using air as 

the gasifying agent, methane exhibits the 
lowest concentration (~3%) compared with 
carbon monoxide and hydrogen. The 
maximum methane concentration of 2.66% 
was obtained without using the recycle 
system at an air flowrate of 125.68 L/min 
(ER = 0.028), retaining on a 0.5” sieve of 

feedstock size and an average gasification 
temperature of 771 oC. It was observed that 
the maximum concentration was lower 
(1.83%) when using the recycle system with 
a higher equivalent ratio at 0.042 (Figure 4). 
 

The results agree with the research 
conducted in an updraft gasifier at 1148–
1273 K (Surjosatyo et al., 2014) and in a 
fluidised bed gasifier at 780 oC (Ruoppolo et 
al., 2012). Both identified that a higher 
recycle flow rate increases methane in the 
producer gas significantly. 

Figure 5 shows that the recycle system 
generated more CO2 at the same air flowrate 

and the same feedstock size. The fraction 
tends to decrease with increasing air flowrate 
for all feedstock sizes. With the recycle 
system, the highest CO2 produced was 
14.83% while 13.51% was obtained without 

the recycle system at the same air flowrate 
of 62.84 L/min and ER of 0.014. At the same 

ER, the recycle system was able to increase 
gasification temperature compared to 
without the recycle system from 742 to 836 
oC. 

This condition agrees with previous research 
(Li et al., 2004), with the CO2 gas decreasing 
from 14.5% to 11.7% with an increasing of 
air-fuel ratio from 0.20 to 0.45 at a 
gasification temperature of 700–850 oC. 
Experiments without recycling showed a 

fluctuating CO2 content in the gas. This is in 

accordance with research using a fixed-bed 
gasifier reactor at a temperature of 1000 oC 
and an ER of 0.02–0.87 without recycling 
(Yin et al., 2012). With increasing the 
feedstock size from 1 to 8 cm, the CO2 in the 
producer gas fluctuated significantly. 
 

3.2. Tar Reduction 
 
It is presented in Figure 6 that using 
producer gas recycling, which contains 
carbon dioxide, together with air as a 
gasifying agent was likely to reduce the tar 

content in the gas. The tar reduction 
increased significantly at a medium volume 
fraction of recycle gas (9.0%) in the 
gasifying agent mixture but decreased when 
using more fraction. Using a medium 
feedstock size of passed 1.0” and retained on 
0.5” sieve size resulted in the highest 

reduction at all recycle volume fractions. 
However, there is only a marginal increase of 
tar reduction from 92.0% to 97.2% when 
using this size at a higher volume fraction of 
recycling compared with the lower fraction.  
 
In general, the observed gasifier 

temperatures were higher at a low volume 

fraction of recycle gas rather than at a high 
volume fraction. The possible explanation is 
that more CO2 content in the gasifying agent 
mixture promotes endothermic boudouard 
and dry dealkylation reactions, with potential 

to decrease the temperature.  
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Figure 6.  Effect of recycle gas in gasifying agent on tar reduction at different feedstock sizes 

 

 
Figure 7. Effect of air flowrate on CGE 

 
 

This is consistent with previous research 
using wood as fuel for gasification in a 
fluidised bed gasifier (Pohořelý et al., 2014).  
It is also reported that the tar content in 

producer gas reduced to less than 45 
mg/Nm3 when using downdraft gasifier with 
innovative two-stage air and a premixed 

air/gas supply (Jaojaruek et al., 2011). This 
gas is possible to be injected directly into an 
internal combustion engine. A previous 
research using the same fixed-bed downdraft 
gasifier and palm kernel shell as feedstocks 
reviewed the same behaviour (Pranolo et al., 

2018). The recycle gas to the gasifier 
reduced the tar content in the producer gas 
up to 62% at temperatures of 750–780 oC. 
 
3.3. Cold Gas Efficiency 

 
The CGE describes the ratio of calculated 

heating value of the producer gas using 
combustible contents of the gas and the 
heating value of biomass feedstocks, which 
indicates the performance of the gasification 

configuration. This study shows that the 
recycle system of producer gas into the 
gasifier improves the CGE significantly by 
~12%–34% at a high flowrate of gasifying 

agent (Figure 7). Even more when using a 
smaller particle size, the recycle system 
improves the CGE significantly. At a medium 

air flowrate of 125.68 L/min, a gasifying 
smaller feedstock size (retaining on 1.0” 
sieve) resulted higher CGE compared with 
higher air flowrate, but this generates less 
producer gas. This result agrees with 
previous work using two-stage air-gas 

supply which improved gas efficiency and the 
capacity around 15% and 40%, respectively 
(Jaojaruek et al., 2011). 
 
A previous research also confirmed that 

increasing the air flowrate resulted 
increasing gasification efficiency in an 

updraft gasifier. Using an updraft gasifier 
without recycling for coconut shell 
gasification, increasing the air flowrate from 
70.2 to 122.4 L/min caused the gasification 
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efficiency raised from 40% to 55% (Vidian, 
2008). The efficiency would continue to rise 
until a certain maximum point, then would 
decrease as the combustion air flowrate 

increases. Further increasing the air flowrate 
causes low combustible gas content in the 
producer gas because the combustion that 
occurs is more perfect. 
 
4. Conclusion 
 

Application of a recycle system to cocoa pod 
husk gasification in a fixed-bed downdraft 

gasifier reduces tar content in the gas 
significantly. This also improves the CGE 
more when a smaller particle size of cocoa 
pod husk is applied. Carbon monoxide and 
hydrogen content of the gas are in the 

acceptable range as fuel gas. Thus, the gas 
may substitute the diesel fuel partially for 
generating electricity.  
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